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Abstract

Deep Blue is the chess machine that defeated then-reigning World Chess Champion Garry
Kasparov in a six-game match in 1997. There were a number of factors that contributed to this
success, including:

• a single-chip chess search engine,
• a massively parallel system with multiple levels of parallelism,
• a strong emphasis on search extensions,
• a complex evaluation function, and
• effective use of a Grandmaster game database.
This paper describes the Deep Blue system, and gives some of the rationale that went into the

design decisions behind Deep Blue.  2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper describes the Deep Blue® computer chess system, developed at IBM®

Research during the mid-1990s. Deep Blue is the culmination of a multi-year effort to
build a world-class chess machine. There was a series of machines that led up to Deep
Blue, which we describe below. In fact there are two distinct versions of Deep Blue, one
which lost to Garry Kasparov in 1996 and the one which defeated him in 1997. This paper
will refer primarily to the 1997 version, and comparisons with the 1996 version, which we
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will call Deep Blue I, will be made where appropriate. For clarity, we will sometimes refer
to the 1997 version as Deep Blue II. A brief summary of the chess machines described
here can be found in Appendix B. A fuller history of the Deep Blue project can be found
in [15].

1.1. ChipTest and Deep Thought

Earlier efforts in building a chess machine, ChipTest and Deep Thought, took place
at Carnegie Mellon University in the 1980s. In 1988 Deep Thought was the first chess
machine to beat a Grandmaster in tournament play. These systems used a single-chip chess
move generator [12] to achieve search speeds in the neighborhood of 500,000 positions
per second (ChipTest) to 700,000 positions per second (Deep Thought). Deep Thought is
described in detail in [16,17].

1.2. Deep Thought 2

In 1989–90, part of the Deep Thought team (Anantharaman, Campbell, Hsu) moved to
the IBM T.J. Watson Research Center to continue the effort to build a world-class chess
machine. In late 1990, Joe Hoane replaced Thomas Anantharaman in the group. Deep
Thought 2, aka Deep Blue prototype, was the first result of this effort. Although the primary
purpose of the system was as an intermediate stepping stone to Deep Blue, Deep Thought
2 played in a number of public events from 1991 through 1995.

Although Deep Thought 2 used the same move-generator chip as Deep Thought, it had
four improvements:

1. Medium-scale multiprocessing. Deep Thought 2 initially had 24 chess engines,
although over time that number decreased as processors failed and were not replaced.
This compares with Deep Thought, which usually used two processors (although
there were four- and six-processor versions that made a few appearances).

2. Enhanced evaluation hardware. The Deep Thought 2 evaluation hardware used larger
RAMs and was able to include a few additional features in the evaluation function.
Nonetheless, the evaluation function was relatively simple. For example, the Deep
Thought 2 hardware was not able to recognize “bishops of opposite color”, a feature
that chess players know greatly increases the chance for a drawn endgame. In order to
address this (and other similar problems), the Deep Thought 2 system implemented a
software “band-aid” mechanism. Unfortunately this slowed down the overall system
speed and created numerous search anomalies at the hardware/software boundary. In
spite of these drawbacks, the missing evaluation function features were sufficiently
important to use this evaluation patch.

3. Improved search software. The search software was rewritten entirely for Deep
Thought 2, and was designed to deal better with the parallel search, as well as
implement a number of new search extension ideas. This code would later form the
initial basis for the Deep Blue search software.

4. Extended book [6]. The extended book (see Section 8.2) allowed Deep Thought 2 to
make reasonable opening moves even in the absence of an opening book. This feature
was also inherited by Deep Blue.
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The major competitive successes of Deep Thought 2 included victories in the 1991 and
1994 ACM Computer Chess Championships, and a 3–1 win against the Danish national
team in 1993.

1.3. Deep Blue I

Deep Blue I was based on a single-chip chess search engine, designed over a period of
three years. The first chips were received in September of 1995. A number of problems
were found with these chips, and a revised version was received in January of 1996.

Deep Blue I ran on a 36-node IBM RS/6000® SP TM© computer, and used 216 chess chips.
The chips each searched about 1.6–2 million chess positions per second. Overall search
speed was 50–100 million chess positions per second.

The full 36-node Deep Blue I played only six games under tournament conditions, all
in the February 1996 match with Garry Kasparov. This match was won by Kasparov by
a fairly decisive 4–2 score, although the match was tied at 2–2 after the first four games.
Three additional tournament-condition matches were played in preparation for the 1996
Kasparov match, all using a single-node version of Deep Blue with 24 chess chips. This
system, aka Deep Blue Jr., beat Grandmaster Ilya Gurevich 1.5–0.5, drew Grandmaster
Patrick Wolff 1–1, and lost to Grandmaster Joel Benjamin 0–2. 1

1.4. Deep Blue II

After the 1996 match with Kasparov, it was clear that there were a number of deficiencies
in the play of Deep Blue I. A series of changes were made in preparation for the rematch
which took place in May of 1997. First, a new, significantly enhanced, chess chip was
designed. The new chess chip had a completely redesigned evaluation function, going
from around 6400 features to over 8000. A number of the new features were in response to
specific problems observed in the 1996 Kasparov games, as well as in test games against
Grandmaster Joel Benjamin. The new chip also added hardware repetition detection, a
number of specialized move generation modes (e.g., generate all moves that attack the
opponent’s pieces: see Section 3.1), and some efficiency improvements that increased the
per chip search speed to 2–2.5 million positions per second. The second major change was
to more than double the number of chess chips in the system, and use the newer generation
of SP computer to support the higher processing demands thereby created. A third change
was the development of a set of software tools to aid in debugging and match preparation,
e.g., evaluation tuning and visualization tools. Finally, we concluded that the searching
ability of Deep Blue was acceptable, and we spent the vast majority of our time between
the two matches designing, testing, and tuning the new evaluation function.

Deep Blue defeated Garry Kasparov in the 1997 match by a score of 3.5–2.5. For
this victory, the Deep Blue team was awarded the Fredkin prize for defeating the human
world champion in a regulation match. There were two additional matches played by Deep
Blue Jr. in preparation for the Kasparov match. The two matches, against Grandmasters

1 This last match went a long way to convincing us that Joel Benjamin would be an excellent Grandmaster
consultant to the Deep Blue team.



60 M. Campbell et al. / Artificial Intelligence 134 (2002) 57–83

Larry Christiansen and Michael Rohde, were both won by Deep Blue Jr. by a score
of 1.5–0.5.

2. System overview

Deep Blue is a massively parallel system designed for carrying out chess game tree
searches. The system is composed of a 30-node (30-processor) IBM RS/6000 SP computer
and 480 single-chip chess search engines, with 16 chess chips per SP processor. The SP
system consists of 28 nodes with 120 MHz P2SC processors, and 2 nodes with 135 MHz
P2SC processors. The nodes communicate with each other via a high speed switch. All
nodes have 1 GB of RAM, and 4 GB of disk. During the 1997 match with Kasparov, the
system ran the AIX® 4.2 operating system. The chess chips in Deep Blue are each capable
of searching 2 to 2.5 million chess positions per second, and communicate with their host
node via a microchannel bus. The chess chips are described in Section 3.

Deep Blue is organized in three layers. One of the SP processors is designated as the
master, and the remainder as workers. The master searches the top levels of the chess
game tree, and then distributes “leaf” positions to the workers for further examination. The
workers carry out a few levels of additional search, and then distribute their leaf positions
to the chess chips, which search the last few levels of the tree.

Overall system speed varied widely, depending on the specific characteristics of the
positions being searched. For tactical positions, where long forcing move sequences exist,
Deep Blue would average about 100 million positions per second. For quieter positions,
speeds close to 200 million positions per second were typical. In the course of the 1997
match with Kasparov, the overall average system speed observed in searches longer than
one minute was 126 million positions per second. The maximum sustained speed observed
in this match was 330 million positions per second.

Deep Blue relies on many of the ideas developed in earlier chess programs, including
quiescence search, iterative deepening, transposition tables (all described in [24]), and
NegaScout [23]. These ideas and others formed a very sound basis for designing and
building a chess-playing system. Nonetheless, in creating a system as large and complex
as Deep Blue, one naturally runs into relatively unexplored territory. Before describing the
components of Deep Blue in detail (in Sections 3 through 8), it is worthwhile to discuss
those characteristics of Deep Blue that gave rise to new or unusual challenges.

1. Large searching capacity. Previous research in game tree search typically dealt with
systems that searched orders of magnitude fewer positions than Deep Blue. The best
way to take advantage of this additional searching power is not clear. Our work on
the Deep Blue search was guided by two main principles:
(a) The search should be highly non-uniform. It is well known that strong human

players are able to calculate well beyond the depth reachable by a uniform
searcher of any conceivable speed. Our preference for a highly selective search
arose from the loss of Deep Thought to Mike Valvo in a correspondence
match [22], where it was clear to us that Valvo searched significantly deeper than
Deep Thought. The fact that we were hoping to play Garry Kasparov, a chess
player known for his complex attacking style, also figured into this choice.
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(b) The search should provide “insurance” 2 against simple errors. We wanted to be
sure that all move sequences were explored to some reasonable minimum depth.
Early research into pruning algorithms (e.g., null move pruning [3,9]) did not
provide us enough evidence to warrant implementation in the hardware search of
Deep Thought 2 or Deep Blue. Even without pruning, and using highly selective
search, 3 we felt that Deep Blue had sufficient searching power to satisfy our
insurance needs. A three minute search on Deep Blue would reach a full-width
depth of 12.2 on average. 4

Sections 4 and 5 describe the Deep Blue search algorithm.
2. Hardware evaluation. The Deep Blue evaluation function is implemented in

hardware. In a way, this simplifies the task of programming Deep Blue. In a software
chess program, one must carefully consider adding new features, always keeping in
mind that a “better” evaluation function may take too long to execute, slowing down
the program to the extent that it plays more weakly. In Deep Blue, one does not need
to constantly re-weigh the worth of a particular evaluation function feature versus
its execution time: time to execute the evaluation function is a fixed constant. 5 On
the other hand, it is not possible to add new features to the hardware evaluation, 6

and software patches are painful and problematic, as noted above about Deep
Thought 2. For the most part, one must learn to either get by without a desired new
feature, or manufacture some surrogate out of the features that are already available.
Additionally, the extra complexity that is possible in the hardware evaluation function
creates an “embarrassment of riches”. There are so many features (8000) that tuning
the relative values of the features becomes a difficult task. The evaluation function is
described in Section 7.

3. Hybrid software/hardware search. The Deep Blue search combines a software search,
implemented in compiled C code on a general purpose CPU, with a hardware search,
encoded in silicon on the chess chip. The software search is extremely flexible, and
can be changed as needed. The hardware search is parameterized, but the general
form of the search is fixed. Thus it suffers to some degree from the difficulties similar
to those associated with the hardware evaluation function: new search behaviors
cannot be introduced, and the existing parameters require careful tuning. There is
also an additional difficulty, namely choosing the best strategy for switching from
the software to the hardware search. The very fact that the two searches are different
(see Table 1) can lead to horizon effects [4].

4. Massively parallel search. Deep Blue is a massively parallel system, with over 500
processors available to participate in the game tree search. Although there has been

2 This is the terminology used in [18].
3 Our experiments showed that Deep Blue typically sacrificed two ply of full-width search in order to execute

the selective search algorithms.
4 This estimate is based on a linear least squares fit on all the (iteration, log(time)) data points from the 1997

match with Kasparov.
5 Actually there is a distinction between slow and fast evaluation, and feature values can have an impact here.

See Section 3.2.
6 There were limits on design time, chip area, and manufacturing cost/time which made it difficult to build new

chips.
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Table 1
Comparison of hardware and software searches

Software search Hardware search

Host processor, C code Chess chip, state machines

Explores tree near root Explores tree near leaves

No quiescence search Complex quiescence search

Complex recursive extensions Mostly local extensions

Transposition table No transposition table

Uses hardware search as Uses on-chip static evaluation function
dynamic evaluation function

Flexible Hardwired, limited configurability

previous research in such systems [8,13], integrating a large scale parallel search with
the selective search mechanisms in Deep Blue created a new set of challenges. The
parallel search and its interaction with the selective search is described in Section 6.

3. The chess chip

The chip used in Deep Blue is described in detail in [14]. This section will give a brief
overview of the chip. Details of the functionality that is implemented will be described in
the later sections on the hardware search (Section 5) and evaluation function (Section 7).

The chess chip divides into three parts: the move generator, the evaluation function, and
the search control. We will examine each of these in turn, followed by a brief description
of the on-chip support for external circuitry.

3.1. Move generation

The move generator in the Deep Blue chip was based 7 on the Deep Thought move
generator chip [12,13,17], which was in turn based on the move generator of the Belle
chess machine [7]. The Deep Blue chip has a number of additional functions, including
the generation of checking and check evasion moves, as well as allowing the generation of
certain kinds of attacking moves, which permits improved quiescence searching. The chip
also supports several search extensions, including singular extensions [2].

The move generator is implemented as an 8 × 8 array of combinatorial logic, which
is effectively a silicon chessboard. A hardwired finite state machine controls move
generation. The move generator, although it generates only one move at a time, implicitly
computes all the possible moves and selects one via an arbitration network. Computing all
the moves simultaneously is one way to get minimum latency while generating moves in a
reasonable order.

7 The Deep Blue move generator is actually a superset of the Deep Thought move generator.
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A reasonable move ordering, preferably as close to best-first as possible, is an important
consideration for efficient search in game trees. The chess chip uses an ordering that
has worked well in practice, first generating captures (ordered from low-valued pieces
capturing high-valued pieces to high-valued capturing low-valued), followed by non-
capture moves (ordered by centrality). After a move has been examined, a mechanism
exists for masking it out and generating the next move in sequence.

3.2. Evaluation function

The evaluation function implemented in the Deep Blue chip is composed of a “fast
evaluation” and a “slow evaluation” [7]. This is a standard technique to skip computing
an expensive full evaluation when an approximation is good enough. The fast evaluation,
which computes a score for a chess position in a single clock cycle, contains all the easily
computed major evaluation terms with high values. The most significant part of the fast
evaluation is the “piece placement” value, i.e., the sum of the basic piece values with
square-based location adjustments. Positional features that can be computed quickly, such
as “pawn can run”, are also part of the fast evaluation. The slow evaluation scans the chess
board one column at a time, computing values for chess concepts such as square control,
pins, X-rays, king safety, pawn structure, passed pawns, ray control, outposts, pawn
majority, rook on the 7th, blockade, restraint, color complex, trapped pieces, development,
and so on. The features recognized in both the slow and fast evaluation functions have
programmable weights, allowing their relative importance to be easily adjusted.

3.3. Search control

The search control portion of the chip uses a number of state machines to implement
null-window alpha-beta search. The advantage of null-window search is that it eliminates
the need for a value stack, simplifying the hardware design. 8 The disadvantage is that in
some cases it is necessary to do multiple searches, for example when an exact score is
needed.

Another limitation on the hardware search is the lack of a transposition table, which is
known to improve search efficiency significantly in many cases. The effect of this limitation
is lessened by the fact that the upper levels of the Deep Blue search are in software and
have access to a transposition table.

The search requires a move stack to keep track of moves that have been explored so
far at each level of the search tree. The move stack in Deep Blue II includes a repetition
detector, which was not included in Deep Blue I. This detector contained a 32-entry circular
buffer of the last 32 ply. Using a content-addressable memory algorithm [13], the repetition
detector maintains the numbers of pieces displaced in each of the last 32 positions with
respect to the current board position. When the number of pieces displaced equals zero, we
have a repeated position. If the number of pieces displaced equals one, the hardware can
recognize the presence of a legal move that would lead to repetition, and bound the score

8 The alpha-beta algorithm normally maintains two values, alpha and beta, on a stack.
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appropriately. A displaced count of one also can trigger the “no progress” condition: see
Section 4.3.

3.4. Extendability

The chess chips optionally support the use of an external FPGA (Field Programmable
Gate Array) to provide access to an external transposition table, more complicated search
control, and additional terms for the evaluation function. In theory this mechanism would
have allowed the hardware search to approach the efficiency and complexity of the software
search. Null move search was also explicitly supported by this method. Due to time
constraints, this capability was never used in Deep Blue.

4. Software search

Based on the experiences with Deep Thought 1, a new selective search was built for
Deep Thought 2 (which would later form the basis for the Deep Blue selective search).
This search, which we call “dual credit with delayed extensions” was designed based on a
number of principles:

1. Extend forcing/forced pairs of moves. An important part of tactics in chess concerns
forcing/forced pairs (ffp’s) of moves. 9 These show up in various contexts, e.g.,
(a) White has an unstoppable winning threat. Black has numerous delaying moves

(e.g., checks, mate threats, attacks on high valued pieces, etc.) which demand
precise responses by White. Eventually the delaying moves run out and the White
win is discovered.

(b) White has a series of sacrifices and immediate threats, which eventually result in
checkmate or the win of material greater than that sacrificed.

Ideally one would extend the search two ply for each ffp. This almost always leads
to a “search explosion”, i.e., an effectively non-terminating search. The following
techniques are intended to address this problem.

2. Forced moves are expectation dependent. A move may be forced for one level of
expectation and not forced for another. A move that is “fail low”, i.e., below the
current level of expectation, is never considered forced in the Deep Blue search. This
restriction is also described in [2].

3. Fractional extensions [20]. It is not feasible to fully extend all the ffp’s without the
search exploding. First of all, there may be more than one reasonable response to a
forcing move, though by the definition of forcing there should only be a small number
of reasonable responses. Second, even forced moves usually have legal alternatives
which must be refuted. One method of addressing this problem is to allow fractional
extensions, where an ffp does not get a full 2-ply extension, but rather some smaller
amount, say 1.75 ply. The less forcing the ffp, the less the extension.

9 A move that is forced must have a backed up score significantly better (by more than some threshold) than
the backed up score of all the available alternatives. This can be generalized to the case where there are a very
small number of moves better than all the alternatives.
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4. Delayed extensions. Often an isolated ffp is meaningless, and in any case it is not
that hard to “search through”. Things usually become interesting (and more difficult)
when there is a series of ffp’s. One response to this observation is to allow ffp’s to
accumulate “credit”, and only when sufficient credit is available can it be “cashed in”
for an extension. By setting this threshold appropriately, extensions are delayed until
multiple ffp’s occur in a given path.

5. Dual credit. An immediate and serious problem that arises in the above is on the
“principal variation” (PV). The PV represents current best play for both sides, i.e.,
both sides are at their level of expectation. In this case, both sides may be forced to
some degree, and both sides are not fail low, which allows credit to be accumulated.
Clearly it is not feasible to accumulate more than 1 ply of credit for several PV
moves in a row: the search will explode. One solution to this problem is to separate
and accumulate the credit for the two sides separately. 10 If either side accumulates
sufficient credit to cash in for an extension, the other side must give up an equal
amount of credit.

6. Preserve the search envelope. As observed in [2], it is essential to preserve the search
envelope to avoid an oscillating search.

Fig. 1 illustrates some of the basic ideas in the dual credit with delayed extensions
algorithm. The pseudo-code is based on a depth-limited version of alpha-beta using the
negamax formulation [19]. Lines added to the basic alpha-beta code are marked with a
“ * ”.

The first difference we note is in line 5, where the two credits are passed recursively as
parameters in the call to DC. The next significant point is lines 14 through 19. Here is where
an extension may take place. In line 14, CREDIT_LIMIT is the “cash-in” threshold. Line
15 calculates the number of plies of extension to be performed, which is the integer number
of plies needed to bring hisCredit below CREDIT_LIMIT. Given a CREDIT_LIMIT of 2,
as is used in Deep Blue, a value of hisCredit of 2.5 gives a 1-ply extension, and a hisCredit
value of 3.25 gives a 2-ply extension. Note that as the extension is performed (line 18),
both hisCredit and myCredit are reduced by the corresponding amount (though not below
zero).

Until line 26, the code is similar to alpha-beta. Line 26 swaps hisCredit and myCredit as
is required by the negamax framework, and recursively calls the search on the current
successor position. Line 28 is reached if the current move has exceeded the previous
bestScore. This is the prerequisite for credit to be given. GenerateCredit() hides a wealth
of details, including full or reduced depth offset searches and null move threat tests. If
credit is generated for the current move, 11 the search on the successor position is reinvoked
(line 30) with the new credit added in. This time, if the score exceeds bestScore, it becomes
the new bestScore (line 32).

To simplify this description, we have skipped over issues related to preserving the search
envelope. In an actual implementation, it would be essential to know the amount of credit

10 McAllester and Yuret [21] suggested separating the depth computation for the two sides, though not in the
context of a credit system.

11 Note that the generated credit can be fractional. Deep Blue has a granularity of 1/4 ply.
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1 int DC(
2 position p,
3 int alpha, int beta,
4 int depthToGo,
5∗ float myCredit, float hisCredit)
6 {
7 int numOfSuccessors;
8 int bestScore;
9 int i;

10 int sc;
11∗ float newCredit;
12∗ int extensionAmount;
13
14∗ if (hisCredit >= CREDIT_LIMIT) {
15∗ extensionAmount = ceiling(hisCredit - CREDIT_LIMIT);
16∗ hisCredit = hisCredit - extensionAmount;
17∗ myCredit = max(myCredit - extensionAmount, 0);
18∗ depthToGo = depthToGo + extensionAmount;
19∗ }
20
21 if (depthToGo == 0) { return Evaluate(p); }
22
23 bestScore = alpha;
24 numOfSuccessors = GenerateSuccessors(p);
25 for (i = 1; i <= numOfSuccessors; i++) {
26∗ sc = -DC(p.succ[i], -beta, -alpha, depthToGo - 1,

hisCredit, myCredit);
27 if (sc > bestScore) {
28∗ newCredit = GenerateCredit();
29∗ if (newCredit > 0)
30∗ sc = -DC(p.succ[i], -beta, -alpha, depthToGo - 1,

hisCredit, myCredit + newCredit);
31∗ if (sc > bestScore)
32 bestScore = sc;
33 }
34 if (bestScore >= beta) { return bestScore; }
35 }
36 return bestScore;
37 }

Fig. 1. The dual credit algorithm.

generated in earlier appearances of this position, and search with at least that amount of
credit. This avoids oscillating searches, as well as significantly reducing the number of
re-searches (line 29). Details such as checkmate and stalemate have also been glossed
over.
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4.1. Credit generation mechanisms

There is a large set of mechanisms to identify nodes that should receive credit.
1. Singular, binary, trinary, etc. 12

A singular move is one that is significantly better than all the alternatives [2]. One can
generalize this to the case where there are two, three or more good moves. Of course
the more reasonable moves that are available, the less credit that should be given. It
is clear that a large part of what a strong human chess player would define as forcing
is covered by singularity. It is in just these kinds of positions that Grandmasters are
able to calculate very deeply.

2. Absolute singular.
When there is only one legal move a large credit can be given with very little risk.
The reason is that, if the absolute singular move ends up failing low, there are no
alternatives to examine so the cost is contained. It is reasonable in many cases to give
a full two ply extension. This type of move is usually a check evasion move.

3. Threat, mate threat.
It is relatively simple using a null move search to detect if there is a threat in the
current position [1]. A null move search is a search conducted after one side passes.
The intuition here is that if one side passes, then loses quickly, that side is deemed to
have a pending threat against it which the other side is close to exploiting. Positions
where a threat exists tend to be constrained in the number of reasonable alternatives.
If a large threat exists, such as a threat to checkmate, a higher level of credit can
be given. The Deep Blue implementation required that recent ancestors of a given
position have forcing characteristics before a threat credit is given.

4. Influence.
This mechanism gives credit for moves which are enabled by previous moves. For
example, credit may be given for an apparently good white response to a black
move which was not available the previous time black moved. The idea here is that
we assume black is developing a combination even if we don’t quite see what the
combination is.

5. Domain dependent.
Traditional search extension schemes, such as check evasion and passed pawn pushes,
can also be incorporated into this method. For example, a passed pawn push can be
considered a forcing move, and the response, if it does not fail low, can generate
credit.

Many of these methods require auxiliary computation in order to gather the information
necessary to make extension decisions. This was in line with our philosophy of using the
tremendous raw searching power of Deep Blue to enable a more selective search.

The credit assigned for various conditions is depth dependent, with positions near the
root of the tree generally receiving more credit than positions far from the root. This choice
allowed quicker resolution of moderately deep forcing lines without allowing the search to
explode.

12 This terminology is borrowed from stellar astronomy, where it is used to count the number of stars in a
system.
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Table 2
Search characteristics, Position 1

Iteration Minimum Maximum Estimated maximum
software depth software depth combined depth

6 2 5 11–21

7 3 6 12–22

8 4 11 17–27

9 5 15 21–31

10 6 17 23–33

11 7 20 26–36

12 8 23 29–39

4.2. Sample behavior

The following gives a sample of the behavior of Deep Blue in two quite different
positions. The first position 13 is before White’s move 37 in the game Deep Blue–Garry
Kasparov, Match game 2, New York, 1997, and contains some forcing tactical lines (see
Table 2). The second position 14 is before Black’s move 11 in the fifth game of the same
match, and would not normally be considered a tactical position (see Table 3). For better
observability, this experiment was run on Deep Blue Jr., a version of Deep Blue that runs
on a single node of an IBM RS/6000 SP computer. For a given iteration i, the software is
assigned i − 4 ply, which represents the minimum depth search in software. The maximum
depth reached in software is greater than the minimum due to search extensions, and this
value is given in the third column. In these two positions, the maximum software depth is
approximately three times the minimum depth. The last column estimates the maximum
depth reached in hardware and software combined. It is not possible to directly measure
this number, but the estimate is based on results of simulating the hardware search. When
hardware search extensions and quiescence search are taken into account, we typically see
searches of 6 to 16 ply. Thus we can see iteration 12 searches can reach as deep as 40 ply in
positions of this type, which suggests that position 2 is rather tactical after all. This shows
that a superficial analysis of a position does not always assess the forcingness of the key
lines of play.

4.3. Miscellaneous

The Deep Blue scores are composed of two 16-bit signed integers. The regular search
score is in one integer, and the tie breaker score is in the other. Therefore, for a draw, the
regular search score is zero and the tie breaker contains either the static evaluation of a
theoretically drawn position or the count of moves until repetition, which is also useful
choosing draws in the midgame. The count of moves to repetition will be positive if the

13 r1r1q1k1/6p1/3b1p1p/1p1PpP2/1Pp5/2P4P/R1B2QP1/R5K1 w.
14 r2qk2r/pp3ppp/2p1pn2/4n3/1b6/3P2PP/PPPN1PB1/R1BQK2R b.
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Table 3
Search characteristics, Position 2

Iteration Minimum Maximum Estimated maximum
software depth software depth combined depth

6 2 5 11–21

7 3 6 12–22

8 4 10 16–26

9 5 16 22–32

10 6 19 25–35

11 7 20 26–36

12 8 24 30–40

machine is striving for a draw or the count will be negative if the machine is trying to avoid
a draw.

Another idea in Deep Blue, implemented in both hardware and software, is a pruning
mechanism we call “no progress”. It is based on the assumption that if a move is good
for a given side, it is best to play it earlier rather than later. “No progress” is implemented
by detecting if the current position could have been reached by playing an alternate move
at some earlier position on the search path. If so, the search is terminated with a fail low.
Although this algorithm has only limited effect in most positions, situations which are
somewhat blocked and have few pieces present can observe noticeable benefits.

5. Hardware search

The hardware search is that part of the Deep Blue search that takes place on the
chess chip. A chess chip carries out a fixed-depth null-window search, which includes
a quiescence search. There are also various types of search extension heuristics, both for
the full-width and the quiescence portions of the search, which are described below.

The hardware search is fast, but is relatively simple in the Deep Blue system
configuration. To strike a balance between the speed of the hardware search and the
efficiency and complexity of the software search, we limit the chess chips to carry out
only shallow searches. This typically results in 4- or 5-ply searches plus quiescence in
middlegame positions and somewhat deeper searches in endgames.

Once a hardware search is initiated, the host processor controlling that chip is free to do
other work, including performing the software search and initiating hardware searches on
other chips. The host polls the chips to determine when a hardware search has completed.
The host can abort a hardware search if needed, e.g., if the search is taking too long, or is
no longer relevant.

The fact that the hardware search uses a null window requires special handling in the
case where an exact value within a range is needed, rather than a bound. The host can carry
out a binary search, initiating a series of null-window searches to determine the value. In
many cases it is possible to use multiple chess chips simultaneously to speed this operation.
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The main parameters of the hardware search are described below:
1. Depth of search, which controls the depth of the full-width portion of the hardware

search. This is the primary parameter for controlling the size of search.
2. Depth of offset searches, to detect singular, binary, trinary conditions at the root

node of the hardware search tree.
3. Endgame rules assertions off or on (always on in Deep Blue software code). The

switch is mainly for debugging purposes.
4. Endgame ROM assertions off or on (always on in Deep Blue software code). The

switch is mainly for debugging purposes. The endgame ROMs on the chess chip
had the goal of improving the evaluation of common endgames where the natural
evaluation was inaccurate. The particular endgames included were king and pawn
vs. king, rook and pawn vs. rook, queen vs. pawn, and rook vs. pawn. Each endgame
has certain characteristic patterns which are drawn, and some of these patterns are
encoded in the ROMs.

5. Number of “mating” checks allowed for each side in the quiescence search.
A mating check is a checking move which allows zero escape squares for the king
or any checking move which is a “contact” 15 check by the queen. This parameter is
used to control the size of the quiescence search.

6. Number of singular checking moves allowed in the quiescence search (king has one
escape square, or queen or rook contact check, or any check given while the checked
side has a hung 16 piece). This parameter is used to control the size of the quiescence
search.

7. Flags to enable testing of singular, binary, or trinary conditions at the search root.
These extensions are only implemented at the root of the hardware search. Without
access to a transposition table, more general implementations could suffer from
non-terminating searches.

8. Flag to ignore stalemate at one ply above quiescence.
9. Flag to allow a one-ply extension in the quiescence search after a pawn moves to

the 7th rank or, in some cases, pawn moves to the 6th rank.
10. Flag to allow a one-ply extension in the quiescence search when the side to move

has multiple hung pieces or a piece that is pinned and hung.
11. Flag to allow a one-ply extension in the quiescence search when the side to move

has one hung piece for consecutive plies.
12. Flag to allow a one-ply extension in the quiescence search if opponent has any hung

pieces.

6. Parallel search

Deep Blue is composed of a 30-node RS/6000 SP computer and 480 chess chips, with
16 chips per node. The SP nodes communicate with each other using the MPI (Message
Passing Interface) standard [10]. Communication is via a high-speed switch. The chess

15 A contact check is a checking move to a square immediately adjacent to the opposing king.
16 A hung piece can be captured by the opponent with apparent safety.
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chips communicate with their host node via a Micro Channel® bus. This heterogeneous
architecture has a strong influence on the parallel search algorithm used in Deep Blue, as
discussed below.

6.1. Parallel search algorithm

To characterize the parallel search algorithm used in Deep Blue, we will use the
taxonomy given in [5].

1. Processor hierarchy. Deep Blue uses a static processor tree, with one SP node
controlling the other 29 nodes, which in turn control 16 chess chips each. The static
nature of the hierarchy is in part determined by the fact that the chess chips are not
general purpose processors and can only act as slaves. In addition, the chess chips
can only communicate directly with their host node.

2. Control distribution. Deep Blue uses a centralized control of the parallel search.
The control is managed on the SP nodes, since the chess chips do not have this
functionality.

3. Parallelism possible. Deep Blue permits parallelism under the following condi-
tions: 17

(a) Type 1 (PV) nodes. After the first move has been examined at a PV node, all
the alternatives may be examined in parallel (with an offset window to enable
the selective search algorithm). Null move searches, used to generate threat
information for the selective search, can also be carried out in parallel. Finally,
PV nodes at the hardware/software boundary can be searched in parallel. Because
the hardware search allows only null-window searches, a number of searches are
required to determine an exact score within a window.

(b) Good type 2 nodes (nodes where the first move “fails high”, or exceeds
expectations). Most parallel algorithms do not allow or need parallelism in this
case. Deep Blue executes reduced depth offset searches as well as the null move
searches in parallel after the first move fails high. As above, these searches
generate information for use by the selective search.

(c) Bad type 2 nodes (nodes where the fail high move is not searched first). The
moves after the first are searched in parallel. After a fail high move is found, all
the alternatives are searched in parallel with a reduced depth offset search. Null
move searches also can execute in parallel at this point.

(d) Type 3 nodes (nodes where all the moves fail low). These moves can all be
searched in parallel.

4. Synchronization. Type 1 and type 2 nodes are synchronization points for Deep Blue.
The first move must be evaluated before parallelism is allowed. There are also global
synchronization points at the end of iterations.

17 The terminology of node types used in this section was originally defined in [19].
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6.2. Parallel search implementation

The early iterations of the Deep Blue parallel search are carried out on the master node.
There is not much parallelism in the first few iterations, and the master is fast enough (it
has 16 chess chips) that there is little to be gained by attempting to further parallelize the
search.

As the search gets deeper, jobs get allocated throughout the system. There are three
major issues that need to be addressed:

• Load balancing. The search extensions algorithm used in Deep Blue leads to widely
varying tree sizes for a given search depth. This extends all the way to the hardware,
where the complex quiescence search can cause a search to “blow up”. This can
lead to severe load balancing problems. The solution used in Deep Blue was to
abort long-running hardware searches (more than 8000 nodes) and push more of the
search into software. This gives additional opportunities for parallelism. Similarly,
jobs on the worker nodes can abort and return their job to the master for further
splitting.

• Master overload. The performance bottleneck of the Deep Blue system was the mas-
ter processor. One method of alleviating this was to ensure that the workers always
had a job “on deck”, ready to execute when it completes its active job. This reduces
the effect of the communication latency between master and workers.

• Sharing between nodes. Workers do not directly communicate with each other. This
decision was made in order to simplify the implementation. Workers will generally
pass their “expensive” transposition table results up to the master.

As a final point, it should be noted that the Deep Blue parallel search is non-
deterministic. Various factors can influence timing and processor job assignments.
Although this was not a major concern, it makes debugging the system much more difficult.

6.3. Parallel search performance

We have limited experimental results to assess the efficiency of the Deep Blue
parallel search. The most accurate numbers were derived on a single-node version of
Deep Blue with 24 chess chips. We compared the 24 chip system with a single chip
system on a variety of positions. The results varied widely depending on the tactical
complexity of the position searched. For positions with many deep forcing sequences
speedups averaged about 7, for an observed efficiency of about 30%. For quieter positions,
speedups averaged 18, for an observed efficiency of 75%. The non-deterministic nature
of the search, particularly in tactical positions, makes it more difficult to conduct these
measurements.

It is difficult to assess the efficiency of the full 30-node Deep Blue system. Indirect
evidence suggests an overall observed efficiency of about 8% in tactical positions and about
12% in quiet positions. It is clear that there is room for improvement here. However it was
a conscious design decision of the Deep Blue team to focus on improving the evaluation
function following the 1996 Kasparov match, and the parallel search code was largely
untouched between the 1996 and 1997 matches.
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7. Evaluation function

7.1. Overview

The Deep Blue evaluation function is essentially a sum of feature values. The chess chip
recognizes roughly 8000 different “patterns”, and each is assigned a value. Features range
from very simple, such as a particular piece on a particular square, to very complex, as will
be described below in Section 7.2. A feature value can be either static or dynamic. Static
values are set once at the beginning of a search. Dynamic values are also initialized at the
beginning of a search, but during the search they are scaled, via table lookup, based on the
value and type of pieces on the board at evaluation time. For example, king safety, passed
pawns, and pawn structure defects are sensitive to the amount of material on the board.

The initialization of the feature values is done by the “evaluation function generator”, a
sub-program which was run on the master node of SP system. The Deep Blue evaluation
function generator is run only at the root of the search tree. It would likely be of great
benefit to run it at other nodes near the root of the tree after a large positional change
has occurred, such as trading queens. Although the dynamic evaluation terms can handle
this type of transition, some static feature values may be left with less than ideal values.
Unfortunately the full evaluation function generator takes measurable wall clock time to
run and download, and partial downloading was considered too complex to implement.

The evaluation function generator has a second role beyond simply adjusting feature
values based on the context of the root position. The large number of distinct feature values
dictate that some sort of abstraction be imposed on the values in order to keep the task
manageable. The evaluation generator makes these abstractions, dictating relationships
between groups of related feature values rather than setting them independently.

There are 54 registers (see Table 4) and 8096 table entries (see Table 5) for a total of 8150
parameters that can be set in the Deep Blue evaluation function. 18 Some of the parameters
correspond to chess situations that are not physically realizable (e.g., pawns on the first
rank), and others are used for control purposes rather than corresponding to a particular
combination of chess features. There are about 8000 actual features that can be detected in
the chess hardware.

It is impossible in a paper like this to describe all the details of the evaluation function.
We will present a detailed example of one table that gives a feel for the nature of
the evaluation function. A brief description of all the registers and tables is given in
Appendix A.

7.2. Extended example: Rooks on files

We now describe in detail the “Rooks on files” table. We will begin by describing the
features that are detected, then discuss the values assigned to each combination of features,
and show how the values are incorporated into the overall position evaluation.

18 In actual fact, the number is even higher than this. Many of the registers and table entries have two, three, or
even four separate values. The extended example in Section 7.2 illustrates one method of using multiple values.
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Table 4
Deep Blue evaluation registers

Function Number of registers Data bits

Rooks on seventh rank 12 8

Bias 1 8

Opposing rook behind passed 1 9

Mpin and hung 1 7

Pinned and simple hung 1 8

Hung 4 7

Xraying 2 6

Pinned and hung 1 7

Permanent pin and simple hung 1 8

Knight trap 6 8

Rook trap 8 8

Queen trap 2 8

Wasted pawns 2 6

Bishop pair 2 7

Separated passed 2 8

Missing wing 2 10

Bishops of opposite colors 2 6

Evaluation control 2 32

Side to move 2 4

The chessboard is scanned, one file at a time, and a pair of values is looked up, one from
the white rook table and one from the black rook table, for each file. The index bits for
these tables are as follows:

• “unopposed” is a 1-bit subindex, with 0 indicating an enemy pawn on the file, and 1
indicating no enemy pawn on the file.

• “blockage” is a 2-bit subindex with two interpretations, depending on whether or not
there is an enemy pawn on the file. If there are no enemy pawns, 0 indicates that my
rook could safely move to the 7th or 8th ranks, 1 indicates that there is a minor piece
guarded by a pawn that blocks the file, 2 indicates that enemy minor pieces guard the
7th and 8th ranks, and 3 indicates that the 7th and 8th are guarded by the enemy, but
not by minor pieces. If there is an enemy pawn on the file, 0 indicates that the pawn
is unprotected, 1 indicates that there is a minor piece guarded by a pawn that shields
the pawn, 2 indicates that the pawn is protected by a minor piece, and 3 indicates
“granite”, i.e., the pawn is protected by another pawn.

• “semi_open” is a 1-bit subindex, with 0 indicating the presence of a pawn of mine on
the file, and 1 indicating no pawns of mine on the file.
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Table 5
Deep Blue evaluation tables

Function Number of tables Table entries Data bits

Multiple pawns 2 80 8

Minor on weak 2 192 12

Self block 2 320 5

Opponent block 2 128 4

Back block 2 160 5

Pinned 2 128 8

Mobility 8 128 9

Pawn structure 2 160 32

Passed pawns 2 320 32

Joint signature 1 256 8

Rooks on files 2 192 10

Bishops 4 128 11

Pawn storm 2 128 18

Pawn shelter 2 384 14

Development 1 256 9

Trapped bishop 1 128 8

Signature 2 128 20

Contempt 1 256 8

Piece placement 1 1024 10

• “rook_count” is a 2-bit subindex, with only the values 0, 1 and 2 being legal.
rook_count indicates the number of rooks for my side that are not behind my own
pawns.

• “centrality” is a 2-bit subindex, with files “a” and “h” receiving value 0, files “b” and
“g” receiving 1, files “c” and “f” receiving 2, and files “d” and “e” receiving 3.

Each table entry is 10 bits, which is divided into three fields:
• “kmodOpp” is a 2-bit field which causes extra points to be added to the king safety

if the sides have castled on opposite sites. The field chooses a multiplier, which is 2
for 0, 1.5 for 1, 1 for 2, and 0.5 for 3. The base value (see below) is multiplied by the
appropriate value and then included in the king safety calculation if the file is adjacent
to the enemy king. As a special case, the rook file is considered adjacent to the bishop
file.

• “kmod” is a 2-bit field, similar to kmodOpp, used when the kings have castled on the
same side.

• “base” is a 6-bit field which gets summed into the overall evaluation. This is the
“value” of the given formation, independent of king safety considerations.
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There is an additional factor to consider for rooks on files. Under some circumstances,
pawns can be semi-transparent to rooks. For example, if a pawn is “levering”, it is
considered semi-transparent to rooks. For this purpose, levering is defined to be having
the possibility of capturing an enemy pawn. Under such circumstances, rooks get about
half the value of the unblocked file. This feature was of critical importance in Game 2 of
the 1997 match between Garry Kasparov and Deep Blue.

The king-safety component of rooks on files is not directly added to the evaluation of
a position, but is first scaled by the amount of material on the board (via a table lookup).
Positions with most of the pieces still on the board may retain the full king-safety value,
while endgames will have the value scaled to close to zero. This, for example, encourages
Deep Blue to trade pieces in positions where its king is less safe than the opponent’s king.
The king safety term itself is non-linear, and is quite complex, particularly before castling
has taken place.

7.3. Automated evaluation function analysis

Although the large majority of the features and weights in the Deep Blue evaluation
function were created/tuned by hand, there were two instances where automated analysis
tools aided in this process.

The first tool had the goal of identifying features in the Deep Blue I evaluation
function that were “noisy”, i.e., relatively insensitive to the particular weights chosen. The
hypothesis was that noisy features may require additional context in order to be useful. A
hill-climbing approach was used to explore selected features (or feature subsets), and those
that did not converge were candidates for further hand examination. A number of features
in the Deep Blue I evaluation were identified, and significantly modified in Deep Blue II
hardware, including piece mobility, king safety, and rooks on files.

A second tool was developed with the goal of tuning evaluation function weights.
This tool used a comparison training methodology [25] to analyze weights related to
pawn shelter. Training results showed that the hand-tuned weights were systematically
too low [26], and they were increased prior to the 1997 match. There is some evidence that
this change led to improved play [26].

8. Miscellaneous

8.1. Opening book

The opening book in Deep Blue was created by hand, primarily by Grandmaster Joel
Benjamin, with assistance from Grandmasters Nick De Firmian, John Fedorowicz, and
Miguel Illescas. The book consisted of about 4000 positions, 19 and every position had
been checked by Deep Blue in overnight runs. The openings were chosen to emphasize
positions that Deep Blue played well. In general this included tactically complex openings,

19 This may seem surprisingly small. In fact, numerous openings did have minimal preparation, due to our
confidence in the extended book (Section 8.2).
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but also included more positional openings that Deep Blue handled well in practice.
Opening preparation was most extensive in those openings expected to arise in match play
against Kasparov. In fact, none of the Kasparov-specific preparation arose in the 1997
match.

Prior to a game, a particular repertoire was chosen for Deep Blue. There were a number
of possible repertoires to choose from, and the choice would be made on the basis of
the match situation and the previous experience playing with the same color. Last minute
changes or corrections were made in a small “override” book.

8.2. Extended book

The extended book [6] in Deep Blue is a mechanism that allows a large Grandmaster
game database to influence and direct Deep Blue’s play in the absence of opening book
information. The basic idea is to summarize the information available at each position of
a 700,000 game database, and use the summary information to nudge Deep Blue in the
consensus direction of chess opening theory.

The specific mechanism used in Deep Blue was to assign bonuses (or penalties) to those
moves in a given position that had been played in the Grandmaster game database. For
example, suppose that in the opening position of a chess game the move d4 is given a 10
point bonus. Deep Blue would carry out its regular search, but offset the alpha-beta search
window for d4 by 10 points. Thus d4 would be preferred if it was no more than than 10
points worse the best of the other moves.

A number of factors go into the extended book evaluation function, including:
• The number of times a move has been played. A move frequently played by

Grandmasters is likely to be good.
• Relative number of times a move has been played. If move A has been played many

more times than move B, then A is likely to be better.
• Strength of the players that play the moves. A move played by Kasparov is more

likely to be good than a move played by a low-ranked master.
• Recentness of the move. A recently played move is likely to be good, an effect that

can in some cases dominate other factors.
• Results of the move. Successful moves are likely to be good.
• Commentary on the move. Chess games are frequently annotated, with the annotators

marking strong moves (with “!”) and weak moves (with “?”). Moves marked as strong
are likely to be good; moves marked as weak are likely to be bad.

• Game moves versus commentary moves. Annotators of chess games frequently
suggest alternative moves. In general, game moves are considered more reliable than
commentary moves, and are thus likely to be better.

We developed an ad hoc function that combined these factors in a nonlinear way to
produce a scalar value as output. The value of the bonus can be as high as half a pawn
in favorable situations. In some situations, where the bonus for one move is very large
and other move bonuses are much smaller, Deep Blue has the option of playing a move
immediately, without first carrying out a search.
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The extended book was introduced into Deep Thought 2 in 1991, and was used with
good success through the matches with Kasparov. In [6], an example is given of how the
extended book worked in game 2 of the 1997 Kasparov–Deep Blue match.

8.3. Endgame databases

The endgame databases in Deep Blue includes all chess positions with five or fewer
pieces 20 on the board, as well as selected positions with six pieces that included a pair
of blocked pawns. The primary sources for these databases were the Ken Thompson CD-
ROMs [27] and additional databases supplied by Lewis Stiller.

Endgames databases were used both off-line and on-line. The off-line usage was during
the design of the chess chips. Each chip had a ROM which stored patterns to help evaluate
certain frequently occurring chess endgames. The databases were used to verify and
evaluate these patterns. See Section 5 for more details.

The software search used the databases in on-line mode. Each of the 30 general purpose
processors in the Deep Blue system replicated the 4-piece and important 5-piece databases
on their local disk. The remaining databases, including those with 6 pieces, were duplicated
on two 20-GB RAID disk arrays, and were available to all the general purpose processors
through the SP switch.

Endgames were stored in the databases with one bit per position (indicating lose or does-
not-lose). If a position is reached during the search that had a known value, it received
a score composed of two parts: a high-order, game theoretic value, and a low-order,
tie-breaker value. The tiebreaker value is simply the value produced by the evaluation
function on the position in question. If this score is sufficient to cause a cutoff, the search
immediately backs up this score.

For example, suppose Deep Blue had to choose between various possible continuations
that resulted in it playing the weak side of a rook and pawn versus rook endgame. Deep
Blue would, of course, prefer drawn positions over lost ones. In addition, given the
choice between different drawn positions, it would choose the one with the best evaluation
function value.

The endgame databases did not play a critical role in the matches against Kasparov. In
the 1997 match, only game 4 approached an endgame that required access to the databases,
but the ROMs on the chess chips had sufficient knowledge to recognize the rook and pawn
versus rook draws that could have arisen.

8.4. Time control

Chess games typically have a set of requirements on the speed of play, termed the “time
control”. For example, the Deep Blue–Kasparov games initially required 40 moves to be
played in two hours. Failure to make the specified number of moves leads to forfeiting the
game.

The time control mechanism in Deep Blue is relatively straightforward. Before each
search, two time targets are set. The first is the normal time target, set to be approximately

20 We use the term “piece” to also include pawns.
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the time remaining to the next time control divided by the moves remaining. In practice,
a considerable time buffer is reserved, which allows for sufficient time to handle technical
difficulties, as well as saving time for a possible “sudden-death” phase. The second time
target is the panic time target, which is roughly one third of the remaining time.

If, at the normal time target, the situation is “normal”, a time-out occurs and the current
best move is played. There are a few conditions under which Deep Blue will go beyond its
normal target into “panic time”.

• The current best move has dropped 15 points or more from the score of the previous
iteration. In this case, the search continues until either a new move is found within the
15 point margin, the iteration is completed, or the panic time target is reached.

• The best move from the previous iteration is in a potential “fail-low” state. Continue
until this state is resolved, or the panic time target is reached. If this move ends up
dropping 15 points or more from its prior value, continue as in the previous case.

• A new move is in a potential “fail-high” state. Continue until this state is resolved, or
the panic time target is reached.

These conditions are triggered frequently during a game, but it is quite rare to actually
go all the way to the panic time target. In the 1997 match with Kasparov, this happened
only once.

9. Conclusion

The success of Deep Blue in the 1997 match was not the result of any one factor. The
large searching capability, non-uniform search, and complex evaluation function were all
critical. However other factors also played a role, e.g., endgame databases, the extended
book, and evaluation function tuning.

It is clear, however, that there were many areas where improvements could have been
made. With additional effort, the parallel search efficiency could have been increased.
The hardware search and evaluation could have been made more efficient and flexible
with the addition of an external FPGA. Current research (e.g., [11]) suggests that the
addition of pruning mechanisms to Deep Blue might have significantly improved the
search. Evaluation function tuning, both automatic and manual, was far from complete.

In the course of the development of Deep Blue, there were many design decisions that
had to be made. We made particular choices, but there were many alternatives that were
left unexplored. We hope this paper encourages further exploration of this space.
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Appendix A. Evaluation tables and registers

• Rooks on seventh: There are 12 8-bit registers, for the various combinations of
{White, Black} × {single, doubled} × {regular, absolute-king-trapped, absolute-
king-not-trapped}.

• Bias: This register was designed for use with external (off-chip) hardware.
• Rook behind passed: A bonus is awarded for a rook behind a passed pawn of the same

color.
• Mpin and hung: A bonus is awarded when the opponent has a piece that is hung and

pinned against a piece equal in value to the pinner.
• Pinned and simple hung: A bonus is awarded when the opponent has a piece that is

pinned and hung.
• Hung: A bonus is awarded if the opponent has a piece that is hung.
• Xraying: A bonus is awarded for having an “xray attack”, i.e., an attack masked by

one’s own piece.
• Pinned and hung: A bonus is awarded when the opponent has a piece that is both

pinned and hung. “Hung” is distinguished from “simple hung” by a more detailed
analysis of the capture sequence.

• Permanent pin and simple hung. A bonus is awarded for a permanent pin of a piece.
• Knight trap: These 6 registers (3 for each side) provide penalties for some frequently

occurring situations where knights can get trapped.
• Rook trap: These 8 registers (4 for each side) provide penalties for some frequently

occurring situations where rooks can get trapped.
• Queen trap: These 2 registers (1 for each side) provide penalties for when there is no

safe queen mobility.
• Wasted pawns: A penalty is assessed for pawn groups that have “wasted” pawns.

A pawn group has a wasted pawn if it is unable to create a passed pawn against a
smaller group of enemy pawns. There are two values, one each for White and Black,
and the penalties are dynamically scaled by the amount of material on the board at the
time of evaluation.

• Bishop pair: A bonus may be awarded for having a pair of bishops. There are two
values, on each for White and Black.

• Separated passed: Widely separated passed pawns are advantageous if trying to win
in a bishops of opposite color endgame.

• Missing wing: Provides a penalty for the side that is ahead if it allows itself to be left
with pawns on only one side.

• BOC: A set of reductions on the evaluation for pure bishops of opposite color, and
various combinations of major pieces and bishops of opposite color.

• Side to move: A bonus may be given for being on move.
• Multiple pawns: There are two 80-entry tables, for the various combinations of

{White, Black} × {backward, not backward} × {opposed, unopposed} × {doubled,
tripled+} × {ah, bg, cf, de} × {isolated, pseudo-isolated, supported, duo}. Some
combinations are not legal. There is an 8-bit penalty value associated with each
realizable combination.
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• Minor on weak: This pair of tables gives bonuses for minor pieces on weak squares,
taking into account such factors as advancement, centrality, pawn support, minor
piece type, challengability, and screened status.

• Self block: This table assesses how each side’s bishops are restrained by their own
pawn.

• Opp block: This table assesses how each sides’s bishops are restrained by the
opponents’s pawns.

• Back block: This table assesses how doubled pawns can restrain a bishop’s mobility.
• Pinned: Pins are awarded bonuses depending on the strength of the pin and the amount

of pressure on the pinned piece.
• Mobility: The mobility to each square on the board is summed to produce on overall

mobility score. Each square has 16 possible levels of mobility, from maximum Black
control through maximum White control. The control level and the square location
determine each square’s contribution.

• Pawn structure: This table assesses various features of pawn structure not handled
elsewhere.

• Passed pawns: This table assesses the worth of passed pawns.
• Joint signature: This table allows adjustments to be made for particular piece

matchups.
• Rooks on files: There are two 192-entry tables, for the various combinations of

{White, Black} × {opposed, unopposed} × {4 blockage types} × {semi-open, not
semi-open} × {ah, bg, cf, de} × {0, 1, or 2 rooks}. There is an 6-bit value associated
with each combination, and two 2-bit flags indicating how the value is to be used in
the king-safety calculation.

• Bishops: Bishops are awarded bonuses for the value of the diagonals they control. The
diagonals are individually assessed, and include factors such as transparency (ability
to open at will), king safety, and target of attack.

• Pawn storm: This table helps to assess pawns being used to attack the opponent’s
king.

• Pawn shelter: This table evaluates the pawn shelter that protects or may protect one’s
own king.

• Development: This table measures the differences in development between the two
sides, factors in the king situation, and gives a bonus to the side that is ahead in
development/king safety.

• Trapped bishop: This table is used to detect situations where bishops can become
trapped.

• Signature: These tables, one for each side, allow adjustments to be made for particular
piece combinations that work well or poorly together. For example, queen and knight
are thought to cooperate better than queen and bishop.

• Contempt: The table gives the adjustment to the draw score. It is used to either prefer
or avoid draws, depending on the opponent and the match situation. The adjustment
is material dependent.

• Piece placement: This table, in common use in most chess programs, has one entry
for each piece type on each square of the board.
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Table B.1
Summary of systems

System name First played Processors Nodes/second Feature groups

ChipTest 1986 1 50K 1

ChipTest-m 1987 1 400K 1

Deep Thought 1988 2–6 700K–2M 4

Deep Thought 2 1991 14–24 4M–7M 4

Deep Blue I 1996 216 50M–100M 32

Deep Blue II 1997 480 100M–200M 38

Deep Blue Jr. 1997 24 20M–30M 38

Deep Blue Jr. demo 1997 1 2M 38

Appendix B. Summary of Deep Blue and predecessors

Table B.1 gives some characteristics of the various systems in the Deep Blue lineage.
There are a number of qualifications on the values in this table.

• The ChipTest and Deep Thought systems used software adjustments to account for
features not recognized by the evaluation hardware.

• The Deep Blue systems allowed the evaluation features to interact in ways that were
not possible in earlier systems.

• The demo version of Deep Blue Jr. was restricted to one second of computation
time on one processor, did not detect repetition with game history, and had a fixed
evaluation function that did not vary with game stage.
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